Progress in regenerative medicine has been coming fast and furious in recent months: scientists are now using far-out tissue engineering techniques to restore liver function in mice, regrow human muscle, and even implant bioengineered blood vessels into ailing patients. Now, a team at the University of Pittsburgh has managed to grow human heart tissue that can beat autonomously in a petri dish - an exciting step towards devising transplantable replacement organs. The group, who reported their progress in the journal Nature Communications, used induced pluripotent stem cells (iPS cells) to accomplish the feat. These mature human cells are first "reprogrammed" to an embryonic state, before being spurred to develop into a specialized type of cell. In this instance, iPS cells derived from human skin were induced to become multipotential cardiovascular progenitor (MCP) cells - basically heart cells that can further differentiate into three varieties of highly specialized cells required for cardiovascular function
No comments:
Post a Comment